LazyBear

Ehlers Adaptive Cyber Cycle Indicator [LazyBear]

Another famous Ehlers indicator.

This is the adaptive version of Ehlers' Cyber Cycle ( CC ) (already published, check "More info" below). Idea behind making something "adaptive" is to calculate it using dynamic cycle period inputs instead of static setting. In adaptive cyber cycle, Ehlers uses the dominant cycle period as the length in computation of alpha.

According to Ehlers this should be more responsive than the non-adaptive version. Buy and sell signals should often occur one bar earlier than for the non-adaptive version.

I have the usual options in place. Check out plain CC for comparison.

More info:
- Cyber Cycle Indicator: - Cybernetic Analysis for Stocks and Futures ( Ehlers )

List of my public indicators: http://bit.ly/1LQaPK8
List of my app-store indicators: http://blog.tradingview.com/?p=970

List of my free indicators: http://bit.ly/1LQaPK8
List of my indicators at Appstore: http://blog.tradingview.com/?p=970
Mã nguồn mở

Với tinh thần TradingView, tác giả của tập lệnh này đã xuất bản nó dưới dạng mã nguồn mở, vì vậy các nhà giao dịch có thể hiểu và xác minh nó. Chúc mừng tác giả! Bạn có thể sử dụng mã này miễn phí, nhưng việc sử dụng lại mã này trong một ấn phẩm chịu sự điều chỉnh của Nội quy nội bộ. Bạn có thể yêu thích nó để sử dụng nó trên biểu đồ.

Bạn muốn sử dụng tập lệnh này trên biểu đồ?
//
// @author LazyBear 
// 
// List of my public indicators: http://bit.ly/1LQaPK8 
// List of my app-store indicators: http://blog.tradingview.com/?p=970 
//
study("Ehlers Adaptive Cyber Cycle Indicator [LazyBear]", shorttitle="EACCI_LB", overlay=false, precision=3)
src=input(hl2, title="Source") 
a=input(.07, title="Alpha")
s = (src + 2*src[1] + 2*src[2] + src[3])/6.0
c = n<7?(src - 2*src[1] + src[2])/4.0:((1 - 0.5*a)*(1 - 0.5*a)*(s - 2*s[1] + s[2]) + 2*(1-a)*c[1] - (1 - a)*(1-a)*c[2])
q1 = (.0962*c + 0.5769*c[2] - 0.5769*c[4] - .0962*c[6])*(0.5+.08*nz(ip[1]))
I1 = c[3]
dp_ = iff(q1 != 0 and q1[1] != 0, (I1/q1 - I1[1]/q1[1]) / (1 + I1*I1[1]/(q1*q1[1])),0)
dp = iff(dp_ < 0.1, 0.1, iff(dp_ > 1.1, 1.1, dp_))
med(x,y,z) => (x+y+z) - min(x,min(y,z)) - max(x,max(y,z))
md = med(dp,dp[1], med(dp[2], dp[3], dp[4]))
dc = iff(md == 0, 15, 6.28318 / md + 0.5)
ip = .33*dc + .67*nz(ip[1])
p = .15*ip + .85*nz(p[1])
a1 = 2.0/(p + 1)
ac=nz(((1-0.5*a1)*(1-0.5*a)*(s-2*s[1]+s[2])+2*(1-a1)*ac[1]-(1-a1)*(1-a1)*ac[2]), (src-2*src[1]+src[2])/4.0)
t=ac[1]
fr=input(true, title="Fill Osc/Trigger region")
plot(0, color=gray, title="ZeroLine")
duml=plot(fr?(ac>t?ac:t):na, style=circles, linewidth=0, color=gray, title="Dummy")
cmil=plot(ac, title="AdaptiveCyberCycle",color=blue)
tl=plot(t, title="Trigger",color=green)
fill(cmil, duml, color=red, transp=50, title="NegativeFill")
fill(tl, duml, color=lime, transp=50, title="PositiveFill")
ebc=input(false, title="Color bars?")
bc=ebc?(ac>0? (ac>t?lime:(ac==t?gray:green)): (ac<t?red:orange)):na
barcolor(bc)