KivancOzbilgic

Inverse Fisher Transform on RSI

About John EHLERS:


From California, USA, John is a veteran trader. With 35 years trading experience he has seen it all. John has an engineering background that led to his technical approach to trading ignoring fundamental analysis (with one important exception).
John strongly believes in cycles. He’d rather exit a trade when the cycle ends or a new one starts. He uses the MESA principle to make predictions about cycles in the market and trades one hundred percent automatically.
In the show John reveals:
• What is more appropriate than trading individual stocks
• The one thing he relies upon in his approach to the market
• The detail surrounding his unique trading style
• What important thing underpins the market and gives every trader an edge


About INVERSE FISHER TRANSFORM:

The purpose of technical indicators is to help with your timing decisions to buy or
sell. Hopefully, the signals are clear and unequivocal. However, more often than
not your decision to pull the trigger is accompanied by crossing your fingers.
Even if you have placed only a few trades you know the drill.
In this article I will show you a way to make your oscillator-type indicators make
clear black-or-white indication of the time to buy or sell. I will do this by using the
Inverse Fisher Transform to alter the Probability Distribution Function ( PDF ) of
your indicators. In the past12 I have noted that the PDF of price and indicators do
not have a Gaussian, or Normal, probability distribution. A Gaussian PDF is the
familiar bell-shaped curve where the long “tails” mean that wide deviations from
the mean occur with relatively low probability. The Fisher Transform can be
applied to almost any normalized data set to make the resulting PDF nearly
Gaussian, with the result that the turning points are sharply peaked and easy to
identify. The Fisher Transform is defined by the equation
1)
Whereas the Fisher Transform is expansive, the Inverse Fisher Transform is
compressive. The Inverse Fisher Transform is found by solving equation 1 for x
in terms of y. The Inverse Fisher Transform is:
2)
The transfer response of the Inverse Fisher Transform is shown in Figure 1. If
the input falls between –0.5 and +0.5, the output is nearly the same as the input.
For larger absolute values (say, larger than 2), the output is compressed to be no
larger than unity . The result of using the Inverse Fisher Transform is that the
output has a very high probability of being either +1 or –1. This bipolar
probability distribution makes the Inverse Fisher Transform ideal for generating
an indicator that provides clear buy and sell signals.
Phát hành các Ghi chú: here is the code

//@version=3
// author: KIVANC @fr3762 on twitter
// creator John EHLERS
//
study("Inverse Fisher Transform on RSI", shorttitle="IFTRSI")
rsilength=input(5, "RSI Length")
wmalength=input(9, title="Smoothing length")
v1=0.1*(rsi(close, rsilength)-50)
v2=wma(v1,wmalength)
INV=(exp(2*v2)-1)/(exp(2*v2)+1)
plot(INV, color=green, linewidth=2)
hline(0.5, color=red)
hline(-0.5, color=green)
Phát hành các Ghi chú: added option to select source price

Twitter: @kivancozbilgic

YouTube (Turkish): http://youtube.com/c/kivancozbilgic

YouTube (English): http://youtube.com/c/AlgoWorld
Mã được bảo vệ
Tập lệnh này được xuất bản mã nguồn đóng và bạn có thể sử dụng nó một cách tự do. Bạn có thể yêu thích nó để sử dụng nó trên biểu đồ. Bạn không thể xem hoặc sửa đổi mã nguồn của nó.
Thông báo miễn trừ trách nhiệm

Thông tin và ấn phẩm không có nghĩa là và không cấu thành, tài chính, đầu tư, kinh doanh, hoặc các loại lời khuyên hoặc khuyến nghị khác được cung cấp hoặc xác nhận bởi TradingView. Đọc thêm trong Điều khoản sử dụng.

Bạn muốn sử dụng tập lệnh này trên biểu đồ?