PINE LIBRARY
Kalmanfilter

Library "Kalmanfilter"
A sophisticated Kalman Filter implementation for financial time series analysis
Author Rocky-Studio
version 1.0
initialize(initial_value, process_noise, measurement_noise)
Initializes Kalman Filter parameters
Parameters:
initial_value (float): (float) The initial state estimate
process_noise (float): (float) The process noise coefficient (Q)
measurement_noise (float): (float) The measurement noise coefficient (R)
Returns: [float, float] A tuple containing [initial_state, initial_covariance]
update(prev_state, prev_covariance, measurement, process_noise, measurement_noise)
Update Kalman Filter state
Parameters:
prev_state (float)
prev_covariance (float)
measurement (float)
process_noise (float)
measurement_noise (float)
calculate_measurement_noise(price_series, length)
Adaptive measurement noise calculation
Parameters:
price_series (array<float>)
length (int)
calculate_measurement_noise_simple(price_series)
Parameters:
price_series (array<float>)
update_trading(prev_state, prev_velocity, prev_covariance, measurement, volatility_window)
Enhanced trading update with velocity
Parameters:
prev_state (float)
prev_velocity (float)
prev_covariance (float)
measurement (float)
volatility_window (int)
model4_update(prev_mean, prev_speed, prev_covariance, price, process_noise, measurement_noise)
Kalman Filter Model 4 implementation (Benhamou 2018)
Parameters:
prev_mean (float)
prev_speed (float)
prev_covariance (array<float>)
price (float)
process_noise (array<float>)
measurement_noise (float)
model4_initialize(initial_price)
Initialize Model 4 parameters
Parameters:
initial_price (float)
model4_default_process_noise()
Create default process noise matrix for Model 4
model4_calculate_measurement_noise(price_series, length)
Adaptive measurement noise calculation for Model 4
Parameters:
price_series (array<float>)
length (int)
A sophisticated Kalman Filter implementation for financial time series analysis
Author Rocky-Studio
version 1.0
initialize(initial_value, process_noise, measurement_noise)
Initializes Kalman Filter parameters
Parameters:
initial_value (float): (float) The initial state estimate
process_noise (float): (float) The process noise coefficient (Q)
measurement_noise (float): (float) The measurement noise coefficient (R)
Returns: [float, float] A tuple containing [initial_state, initial_covariance]
update(prev_state, prev_covariance, measurement, process_noise, measurement_noise)
Update Kalman Filter state
Parameters:
prev_state (float)
prev_covariance (float)
measurement (float)
process_noise (float)
measurement_noise (float)
calculate_measurement_noise(price_series, length)
Adaptive measurement noise calculation
Parameters:
price_series (array<float>)
length (int)
calculate_measurement_noise_simple(price_series)
Parameters:
price_series (array<float>)
update_trading(prev_state, prev_velocity, prev_covariance, measurement, volatility_window)
Enhanced trading update with velocity
Parameters:
prev_state (float)
prev_velocity (float)
prev_covariance (float)
measurement (float)
volatility_window (int)
model4_update(prev_mean, prev_speed, prev_covariance, price, process_noise, measurement_noise)
Kalman Filter Model 4 implementation (Benhamou 2018)
Parameters:
prev_mean (float)
prev_speed (float)
prev_covariance (array<float>)
price (float)
process_noise (array<float>)
measurement_noise (float)
model4_initialize(initial_price)
Initialize Model 4 parameters
Parameters:
initial_price (float)
model4_default_process_noise()
Create default process noise matrix for Model 4
model4_calculate_measurement_noise(price_series, length)
Adaptive measurement noise calculation for Model 4
Parameters:
price_series (array<float>)
length (int)
Thư viện Pine
Theo tinh thần TradingView thực sự, tác giả đã xuất bản mã Pine này dưới dạng thư viện nguồn mở để các lập trình viên Pine khác trong cộng đồng của chúng tôi có thể sử dụng lại. Xin tri ân tác giả! Bạn có thể sử dụng thư viện này riêng tư hoặc trong các bài đăng nguồn mở khác. Tuy nhiên, bạn cần sử dụng lại mã này theo Nội quy chung.
Thông báo miễn trừ trách nhiệm
Thông tin và ấn phẩm không có nghĩa là và không cấu thành, tài chính, đầu tư, kinh doanh, hoặc các loại lời khuyên hoặc khuyến nghị khác được cung cấp hoặc xác nhận bởi TradingView. Đọc thêm trong Điều khoản sử dụng.
Thư viện Pine
Theo tinh thần TradingView thực sự, tác giả đã xuất bản mã Pine này dưới dạng thư viện nguồn mở để các lập trình viên Pine khác trong cộng đồng của chúng tôi có thể sử dụng lại. Xin tri ân tác giả! Bạn có thể sử dụng thư viện này riêng tư hoặc trong các bài đăng nguồn mở khác. Tuy nhiên, bạn cần sử dụng lại mã này theo Nội quy chung.
Thông báo miễn trừ trách nhiệm
Thông tin và ấn phẩm không có nghĩa là và không cấu thành, tài chính, đầu tư, kinh doanh, hoặc các loại lời khuyên hoặc khuyến nghị khác được cung cấp hoặc xác nhận bởi TradingView. Đọc thêm trong Điều khoản sử dụng.