PINE LIBRARY
Cập nhật

FunctionSMCMC

2 429
Library "FunctionSMCMC"
Methods to implement Markov Chain Monte Carlo Simulation (MCMC)

markov_chain(weights, actions, target_path, position, last_value) a basic implementation of the markov chain algorithm
  Parameters:
    weights: float array, weights of the Markov Chain.
    actions: float array, actions of the Markov Chain.
    target_path: float array, target path array.
    position: int, index of the path.
    last_value: float, base value to increment.
  Returns: void, updates target array

mcmc(weights, actions, start_value, n_iterations) uses a monte carlo algorithm to simulate a markov chain at each step.
  Parameters:
    weights: float array, weights of the Markov Chain.
    actions: float array, actions of the Markov Chain.
    start_value: float, base value to start simulation.
    n_iterations: integer, number of iterations to run.
  Returns: float array with path.
Phát hành các Ghi chú
v2
outsourced the probability distribution sample selection to a external library:
-
FunctionProbabilityDistributionSampling

Thông báo miễn trừ trách nhiệm

Thông tin và các ấn phẩm này không nhằm mục đích, và không cấu thành, lời khuyên hoặc khuyến nghị về tài chính, đầu tư, giao dịch hay các loại khác do TradingView cung cấp hoặc xác nhận. Đọc thêm tại Điều khoản Sử dụng.