PINE LIBRARY
Cập nhật MLActivationFunctions

Library "MLActivationFunctions"
Activation functions for Neural networks.
binary_step(value) Basic threshold output classifier to activate/deactivate neuron.
Parameters:
value: float, value to process.
Returns: float
linear(value) Input is the same as output.
Parameters:
value: float, value to process.
Returns: float
sigmoid(value) Sigmoid or logistic function.
Parameters:
value: float, value to process.
Returns: float
sigmoid_derivative(value) Derivative of sigmoid function.
Parameters:
value: float, value to process.
Returns: float
tanh(value) Hyperbolic tangent function.
Parameters:
value: float, value to process.
Returns: float
tanh_derivative(value) Hyperbolic tangent function derivative.
Parameters:
value: float, value to process.
Returns: float
relu(value) Rectified linear unit (RELU) function.
Parameters:
value: float, value to process.
Returns: float
relu_derivative(value) RELU function derivative.
Parameters:
value: float, value to process.
Returns: float
leaky_relu(value) Leaky RELU function.
Parameters:
value: float, value to process.
Returns: float
leaky_relu_derivative(value) Leaky RELU function derivative.
Parameters:
value: float, value to process.
Returns: float
relu6(value) RELU-6 function.
Parameters:
value: float, value to process.
Returns: float
softmax(value) Softmax function.
Parameters:
value: float array, values to process.
Returns: float
softplus(value) Softplus function.
Parameters:
value: float, value to process.
Returns: float
softsign(value) Softsign function.
Parameters:
value: float, value to process.
Returns: float
elu(value, alpha) Exponential Linear Unit (ELU) function.
Parameters:
value: float, value to process.
alpha: float, default=1.0, predefined constant, controls the value to which an ELU saturates for negative net inputs. .
Returns: float
selu(value, alpha, scale) Scaled Exponential Linear Unit (SELU) function.
Parameters:
value: float, value to process.
alpha: float, default=1.67326324, predefined constant, controls the value to which an SELU saturates for negative net inputs. .
scale: float, default=1.05070098, predefined constant.
Returns: float
exponential(value) Pointer to math.exp() function.
Parameters:
value: float, value to process.
Returns: float
function(name, value, alpha, scale) Activation function.
Parameters:
name: string, name of activation function.
value: float, value to process.
alpha: float, default=na, if required.
scale: float, default=na, if required.
Returns: float
derivative(name, value, alpha, scale) Derivative Activation function.
Parameters:
name: string, name of activation function.
value: float, value to process.
alpha: float, default=na, if required.
scale: float, default=na, if required.
Returns: float
Activation functions for Neural networks.
binary_step(value) Basic threshold output classifier to activate/deactivate neuron.
Parameters:
value: float, value to process.
Returns: float
linear(value) Input is the same as output.
Parameters:
value: float, value to process.
Returns: float
sigmoid(value) Sigmoid or logistic function.
Parameters:
value: float, value to process.
Returns: float
sigmoid_derivative(value) Derivative of sigmoid function.
Parameters:
value: float, value to process.
Returns: float
tanh(value) Hyperbolic tangent function.
Parameters:
value: float, value to process.
Returns: float
tanh_derivative(value) Hyperbolic tangent function derivative.
Parameters:
value: float, value to process.
Returns: float
relu(value) Rectified linear unit (RELU) function.
Parameters:
value: float, value to process.
Returns: float
relu_derivative(value) RELU function derivative.
Parameters:
value: float, value to process.
Returns: float
leaky_relu(value) Leaky RELU function.
Parameters:
value: float, value to process.
Returns: float
leaky_relu_derivative(value) Leaky RELU function derivative.
Parameters:
value: float, value to process.
Returns: float
relu6(value) RELU-6 function.
Parameters:
value: float, value to process.
Returns: float
softmax(value) Softmax function.
Parameters:
value: float array, values to process.
Returns: float
softplus(value) Softplus function.
Parameters:
value: float, value to process.
Returns: float
softsign(value) Softsign function.
Parameters:
value: float, value to process.
Returns: float
elu(value, alpha) Exponential Linear Unit (ELU) function.
Parameters:
value: float, value to process.
alpha: float, default=1.0, predefined constant, controls the value to which an ELU saturates for negative net inputs. .
Returns: float
selu(value, alpha, scale) Scaled Exponential Linear Unit (SELU) function.
Parameters:
value: float, value to process.
alpha: float, default=1.67326324, predefined constant, controls the value to which an SELU saturates for negative net inputs. .
scale: float, default=1.05070098, predefined constant.
Returns: float
exponential(value) Pointer to math.exp() function.
Parameters:
value: float, value to process.
Returns: float
function(name, value, alpha, scale) Activation function.
Parameters:
name: string, name of activation function.
value: float, value to process.
alpha: float, default=na, if required.
scale: float, default=na, if required.
Returns: float
derivative(name, value, alpha, scale) Derivative Activation function.
Parameters:
name: string, name of activation function.
value: float, value to process.
alpha: float, default=na, if required.
scale: float, default=na, if required.
Returns: float
Phát hành các Ghi chú
v2Added:
softmax_derivative(value) Softmax derivative function.
Parameters:
value: float array, values to process.
Returns: float
Thư viện Pine
Theo đúng tinh thần TradingView, tác giả đã công bố mã Pine này như một thư viện mã nguồn mở để các lập trình viên Pine khác trong cộng đồng có thể tái sử dụng. Chúc mừng tác giả! Bạn có thể sử dụng thư viện này cho mục đích cá nhân hoặc trong các ấn phẩm mã nguồn mở khác, nhưng việc tái sử dụng mã này trong các ấn phẩm phải tuân theo Nội Quy.
Thông báo miễn trừ trách nhiệm
Thông tin và các ấn phẩm này không nhằm mục đích, và không cấu thành, lời khuyên hoặc khuyến nghị về tài chính, đầu tư, giao dịch hay các loại khác do TradingView cung cấp hoặc xác nhận. Đọc thêm tại Điều khoản Sử dụng.
Thư viện Pine
Theo đúng tinh thần TradingView, tác giả đã công bố mã Pine này như một thư viện mã nguồn mở để các lập trình viên Pine khác trong cộng đồng có thể tái sử dụng. Chúc mừng tác giả! Bạn có thể sử dụng thư viện này cho mục đích cá nhân hoặc trong các ấn phẩm mã nguồn mở khác, nhưng việc tái sử dụng mã này trong các ấn phẩm phải tuân theo Nội Quy.
Thông báo miễn trừ trách nhiệm
Thông tin và các ấn phẩm này không nhằm mục đích, và không cấu thành, lời khuyên hoặc khuyến nghị về tài chính, đầu tư, giao dịch hay các loại khác do TradingView cung cấp hoặc xác nhận. Đọc thêm tại Điều khoản Sử dụng.