OPEN-SOURCE SCRIPT
Cập nhật Machine Learning Price Target Prediction Signals [AlgoAlpha]

Introducing the Machine Learning Price Target Predictions, a cutting-edge trading tool that leverages kernel regression to provide accurate price targets and enhance your trading strategy. This indicator combines trend-based signals with advanced machine learning techniques, offering predictive insights into potential price movements. Perfect for traders looking to make data-driven decisions with confidence.
What is Kernel Regression and How It Works
Kernel regression is a non-parametric machine learning technique that estimates the relationship between variables by weighting data points based on their similarity to a given input. The similarity is determined using a kernel function, such as the Gaussian (RBF) kernel, which assigns higher weights to closer data points and progressively lower weights to farther ones. This allows the model to make smooth and adaptive predictions, balancing recent data and historical trends.
Key Features
How to Use
How It Works
The indicator calculates features such as price volatility, relative strength, and trend signals, which are stored during training periods. When a trend change is detected, the kernel regression model predicts the likely price move based on these features. Predictions are smoothed using the specified bandwidth to avoid overfitting while ensuring timely responses to feature changes. Visualized take-profit and stop-loss levels help traders optimize risk management. Real-time metrics like win rate and recommended risk-reward ratios provide actionable insights for decision-making.
What is Kernel Regression and How It Works
Kernel regression is a non-parametric machine learning technique that estimates the relationship between variables by weighting data points based on their similarity to a given input. The similarity is determined using a kernel function, such as the Gaussian (RBF) kernel, which assigns higher weights to closer data points and progressively lower weights to farther ones. This allows the model to make smooth and adaptive predictions, balancing recent data and historical trends.
Key Features
- 🎯 Predictive Price Targets: Uses kernel regression to estimate the magnitude of price movements.
- 📈 Dynamic Trend Analysis: Multiple trend detection methods, including EMA crossovers, Hull Moving Average, and SuperTrend.
- 🔧 Customizable Settings: Adjust bandwidth for kernel regression and tweak trend indicator parameters to suit your strategy.
- 📊 Visual Trade Levels: Displays take-profit and stop-loss levels directly on the chart with customizable colors.
- 📋 Performance Metrics: Real-time win rate, recommended risk-reward ratio, and training data size displayed in an on-chart table.
- 🔔 Alerts: Get notified for new trends, take-profit hits, and stop-loss triggers.
How to Use
- 🛠 Add the Indicator: Add it to your favorites and apply it to your chart. Configure the trend detection method (SuperTrend, HMA, or EMA crossover) and other parameters based on your preferences.
- 📊 Analyze Predictions: Observe the predicted move size, recommended risk-reward ratio, and trend direction. Use the displayed levels for trade planning.
- 🔔 Set Alerts: Enable alerts for trend signals, take-profit hits, or stop-loss triggers to stay informed without constant monitoring.
How It Works
The indicator calculates features such as price volatility, relative strength, and trend signals, which are stored during training periods. When a trend change is detected, the kernel regression model predicts the likely price move based on these features. Predictions are smoothed using the specified bandwidth to avoid overfitting while ensuring timely responses to feature changes. Visualized take-profit and stop-loss levels help traders optimize risk management. Real-time metrics like win rate and recommended risk-reward ratios provide actionable insights for decision-making.
Phát hành các Ghi chú
Fixed scaling issue with one of the features so that it is on the same relative scale as other features.Reduced default Bandwidth as it seems to improve performance across multiple assets and timeframes.
Added a new setting to hide NaN signals, a side effect of using low bandwidths is that sometimes predictions may return NaN due to extremely small values being returned by the algorithm.
Renamed a few components on the table to provide a more accurate description.
Mã nguồn mở
Theo đúng tinh thần TradingView, người tạo ra tập lệnh này đã biến tập lệnh thành mã nguồn mở để các nhà giao dịch có thể xem xét và xác minh công năng. Xin dành lời khen tặng cho tác giả! Mặc dù bạn có thể sử dụng miễn phí, nhưng lưu ý nếu đăng lại mã, bạn phải tuân theo Quy tắc nội bộ của chúng tôi.
🚨Get premium: algoalpha.io
🛜Get FREE signals: discord.gg/algoalpha
❓Do you have feedback or indicator ideas? Join our server to tell us about it!
🛜Get FREE signals: discord.gg/algoalpha
❓Do you have feedback or indicator ideas? Join our server to tell us about it!
Thông báo miễn trừ trách nhiệm
Thông tin và ấn phẩm không có nghĩa là và không cấu thành, tài chính, đầu tư, kinh doanh, hoặc các loại lời khuyên hoặc khuyến nghị khác được cung cấp hoặc xác nhận bởi TradingView. Đọc thêm trong Điều khoản sử dụng.
Mã nguồn mở
Theo đúng tinh thần TradingView, người tạo ra tập lệnh này đã biến tập lệnh thành mã nguồn mở để các nhà giao dịch có thể xem xét và xác minh công năng. Xin dành lời khen tặng cho tác giả! Mặc dù bạn có thể sử dụng miễn phí, nhưng lưu ý nếu đăng lại mã, bạn phải tuân theo Quy tắc nội bộ của chúng tôi.
🚨Get premium: algoalpha.io
🛜Get FREE signals: discord.gg/algoalpha
❓Do you have feedback or indicator ideas? Join our server to tell us about it!
🛜Get FREE signals: discord.gg/algoalpha
❓Do you have feedback or indicator ideas? Join our server to tell us about it!
Thông báo miễn trừ trách nhiệm
Thông tin và ấn phẩm không có nghĩa là và không cấu thành, tài chính, đầu tư, kinh doanh, hoặc các loại lời khuyên hoặc khuyến nghị khác được cung cấp hoặc xác nhận bởi TradingView. Đọc thêm trong Điều khoản sử dụng.