PINE LIBRARY
Cập nhật FunctionBlackScholes

Library "FunctionBlackScholes"
Some methods for the Black Scholes Options Model, which demonstrates several approaches to the valuation of a European call.
// reference:
// people.math.sc.edu/Burkardt/py_src/black_scholes/black_scholes.html
// people.math.sc.edu/Burkardt/py_src/black_scholes/black_scholes.py
asset_path(s0, mu, sigma, t1, n) Simulates the behavior of an asset price over time.
Parameters:
s0: float, asset price at time 0.
mu: float, growth rate.
sigma: float, volatility.
t1: float, time to expiry date.
n: int, time steps to expiry date.
Returns: option values at each equal timed step (0 -> t1)
binomial(s0, e, r, sigma, t1, m) Uses the binomial method for a European call.
Parameters:
s0: float, asset price at time 0.
e: float, exercise price.
r: float, interest rate.
sigma: float, volatility.
t1: float, time to expiry date.
m: int, time steps to expiry date.
Returns: option value at time 0.
bsf(s0, t0, e, r, sigma, t1) Evaluates the Black-Scholes formula for a European call.
Parameters:
s0: float, asset price at time 0.
t0: float, time at which the price is known.
e: float, exercise price.
r: float, interest rate.
sigma: float, volatility.
t1: float, time to expiry date.
Returns: option value at time 0.
forward(e, r, sigma, t1, nx, nt, smax) Forward difference method to value a European call option.
Parameters:
e: float, exercise price.
r: float, interest rate.
sigma: float, volatility.
t1: float, time to expiry date.
nx: int, number of space steps in interval (0, L).
nt: int, number of time steps.
smax: float, maximum value of S to consider.
Returns: option values for the european call, float array of size ((nx-1) * (nt+1)).
mc(s0, e, r, sigma, t1, m) Uses Monte Carlo valuation on a European call.
Parameters:
s0: float, asset price at time 0.
e: float, exercise price.
r: float, interest rate.
sigma: float, volatility.
t1: float, time to expiry date.
m: int, time steps to expiry date.
Returns: confidence interval for the estimated range of valuation.
Some methods for the Black Scholes Options Model, which demonstrates several approaches to the valuation of a European call.
// reference:
// people.math.sc.edu/Burkardt/py_src/black_scholes/black_scholes.html
// people.math.sc.edu/Burkardt/py_src/black_scholes/black_scholes.py
asset_path(s0, mu, sigma, t1, n) Simulates the behavior of an asset price over time.
Parameters:
s0: float, asset price at time 0.
mu: float, growth rate.
sigma: float, volatility.
t1: float, time to expiry date.
n: int, time steps to expiry date.
Returns: option values at each equal timed step (0 -> t1)
binomial(s0, e, r, sigma, t1, m) Uses the binomial method for a European call.
Parameters:
s0: float, asset price at time 0.
e: float, exercise price.
r: float, interest rate.
sigma: float, volatility.
t1: float, time to expiry date.
m: int, time steps to expiry date.
Returns: option value at time 0.
bsf(s0, t0, e, r, sigma, t1) Evaluates the Black-Scholes formula for a European call.
Parameters:
s0: float, asset price at time 0.
t0: float, time at which the price is known.
e: float, exercise price.
r: float, interest rate.
sigma: float, volatility.
t1: float, time to expiry date.
Returns: option value at time 0.
forward(e, r, sigma, t1, nx, nt, smax) Forward difference method to value a European call option.
Parameters:
e: float, exercise price.
r: float, interest rate.
sigma: float, volatility.
t1: float, time to expiry date.
nx: int, number of space steps in interval (0, L).
nt: int, number of time steps.
smax: float, maximum value of S to consider.
Returns: option values for the european call, float array of size ((nx-1) * (nt+1)).
mc(s0, e, r, sigma, t1, m) Uses Monte Carlo valuation on a European call.
Parameters:
s0: float, asset price at time 0.
e: float, exercise price.
r: float, interest rate.
sigma: float, volatility.
t1: float, time to expiry date.
m: int, time steps to expiry date.
Returns: confidence interval for the estimated range of valuation.
Phát hành các Ghi chú
v2 fixed some issues.Thư viện Pine
Theo tinh thần TradingView thực sự, tác giả đã xuất bản mã Pine này dưới dạng thư viện nguồn mở để các lập trình viên Pine khác trong cộng đồng của chúng tôi có thể sử dụng lại. Xin tri ân tác giả! Bạn có thể sử dụng thư viện này riêng tư hoặc trong các bài đăng nguồn mở khác. Tuy nhiên, bạn cần sử dụng lại mã này theo Nội quy chung.
Thông báo miễn trừ trách nhiệm
Thông tin và ấn phẩm không có nghĩa là và không cấu thành, tài chính, đầu tư, kinh doanh, hoặc các loại lời khuyên hoặc khuyến nghị khác được cung cấp hoặc xác nhận bởi TradingView. Đọc thêm trong Điều khoản sử dụng.
Thư viện Pine
Theo tinh thần TradingView thực sự, tác giả đã xuất bản mã Pine này dưới dạng thư viện nguồn mở để các lập trình viên Pine khác trong cộng đồng của chúng tôi có thể sử dụng lại. Xin tri ân tác giả! Bạn có thể sử dụng thư viện này riêng tư hoặc trong các bài đăng nguồn mở khác. Tuy nhiên, bạn cần sử dụng lại mã này theo Nội quy chung.
Thông báo miễn trừ trách nhiệm
Thông tin và ấn phẩm không có nghĩa là và không cấu thành, tài chính, đầu tư, kinh doanh, hoặc các loại lời khuyên hoặc khuyến nghị khác được cung cấp hoặc xác nhận bởi TradingView. Đọc thêm trong Điều khoản sử dụng.