Biên tập viên chọnOPEN-SOURCE SCRIPT

A Useful MA Weighting Function For Controlling Lag & Smoothness

So far the most widely used moving average with an adjustable weighting function is the Arnaud Legoux moving average (ALMA), who uses a Gaussian function as weighting function. Adjustable weighting functions are useful since they allow us to control characteristics of the moving average such as lag and smoothness.

The following moving average has a simple adjustable weighting function that allows the user to have control over the lag and smoothness of the moving average, we will see that it can also be used to get both an SMA and WMA.

A high-resolution gradient is also used to color the moving average, makes it fun to watch, the plot transition between 200 colors, would be tedious to make but everything was made possible using a custom R script, I only needed to copy and paste the R console output in the Pine editor.

Settings
  • length : Period of the moving average
  • -Lag : Setting decreasing the lag of the moving average
  • +Lag : Setting increasing the lag of the moving average


Estimating Existing Moving Averages

The weighting function of this moving average is derived from the calculation of the beta distribution, advantages of such distribution is that unlike a lot of PDF, the beta distribution is defined within a specific range of values (0,1). Parameters alpha and beta controls the shape of the distribution, with alpha introducing negative skewness and beta introducing positive skewness, while higher values of alpha and beta increase kurtosis.

Here -Lag is directly associated to beta while +Lag is associated with alpha. When alpha = beta = 1 the distribution is uniform, and as such can be used to compute a simple moving average.

ảnh chụp nhanh

Moving average with -Lag = +Lag = 1, its impulse response is shown below.

It is also possible to get a WMA by increasing -Lag, thus having -Lag = 2 and +Lag = 1.

ảnh chụp nhanh

Using values of -Lag and +Lag equal to each other allows us to get a symmetrical impulse response, increasing these two values controls the heaviness of the tails of the impulse response.

ảnh chụp nhanh

Here -Lag = +Lag = 3, note that when the impulse response of a moving average is symmetrical its lag is equal to (length-1)/2.

As for the gradient, the color is determined by the value of an RSI using the moving average as input.

I don't promise anything but I will try to respond to your comments
gradientlagMoving AveragessmasmoothTrend Analysis

Mã nguồn mở

Theo tinh thần TradingView thực sự, tác giả của tập lệnh này đã xuất bản dưới dạng nguồn mở để các nhà giao dịch có thể hiểu và xác minh. Chúc mừng tác giả! Bạn có thể sử dụng miễn phí. Tuy nhiên, bạn cần sử dụng lại mã này theo Quy tắc nội bộ. Bạn có thể yêu thích nó để sử dụng nó trên biểu đồ.

Bạn muốn sử dụng tập lệnh này trên biểu đồ?


Check out the indicators we are making at luxalgo: tradingview.com/u/LuxAlgo/
Ngoài ra, trên:

Thông báo miễn trừ trách nhiệm